
Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z. and Sun, M., 
2023. Communicative agents for software development. arXiv preprint 
arXiv:2307.07924.

Software development requires cooperation among people 
with diverse skills and typically includes design, coding, and 
testing stages. Past deep learning techniques often needed 
custom designs and were ineffective for software 
development's non-deterministic behavior. Multi-agent LLM-
powered systems communicate through multi-turn dialogues. 
Our goal is to propose a new method for using LLMs in 
software (backend) development, leveraging agent-based 
approaches and advanced LLM prompting techniques, while 
exploring state-of-the-art evaluation methods for software 
generation.

Moises Diaz Malagón, José Mtanous Treviño, Mazal Bethany, Anna Karen Gárate Escamilla, 
Juan Arturo Nolazco Flores, Paul Rad

Master of Applied Artificial Intelligence / Tecnológico de Monterrey, 
The University of Texas at San Antonio, School of Data Science

Collaborative multi-agent language models for 
software development

Abstract & Project Goal

Background

Results

Conclusions

Future Work

References

LLMs excel at handling natural language, aiding in system 
design and communication. Techniques like chain-of-thought 
help LLMs solve problems. Role-playing lets LLMs adopt roles 
without fine-tuning. Autonomous agents enhance LLMs with 
function calling and memory, enabling them to reflect on 
actions and context. Software development, a complex task, 
requires multiple LLM-powered agents with specific roles for 
different phases. Evaluating generated software is difficult. 
Typical metrics like pass@k are insufficient. The ChatDev 
paper suggests completeness, executability, and consistency 
as metrics, integrating them into a single quality score.

870 ChatDev test prompts were used to generate the 4 
metrics, obtaining the following results:

The new system proposal was evaluated for completeness 
and executability in developing a social network. More testing 
is required for representative metrics.

High-level agentic process

Evaluations metrics proposed by chat dev are: Executability: 
evaluates software's operation in a compilation environment. 
Consistency: assesses how the generated code matches the 
original requirement using similarity on embeddings. 
Completeness: quantifies the percentage of software without 
placeholder code. Quality: a comprehensive metric combining 
the previous factors.

Key components of our proposed system are: System 
designer and planner, coding system, bugfixer system. 
Tehcniques used include multi-turn collaborative agents, 
communicative dehallucination, repeated instruction 
mechanism, ReAct agents, chain-of-thought and few-shot 
learning.

High-level architecture

- Extensive work on testing and metrics is required.

- Build a metric to measure code vulnerability

- Coordinator agent for spinning up agents.

- Functions to consult web pages/documentation. 

- Multi-agent techniques as well as advanced prompting 
are key to the solution of complex problems with LLMs.

- Information extractors, dehallucination and repeated 
instruction mechanism greatly help for more 
deterministic workflows using LLMs.

- More research is required for the definition of useful 
metrics for generated code.

Bugfixer System

Methods

ChatDev consists of multiple agents for design, coding and 
testing, cooperating in natural language. 

- Agents perform multi-turn communication for development 
between different roles. 

- Utilizes communicative dehallucination mechanism which 
consists on two agents one instructor and one assistant in 
which the coding assistant asks for clarifications before 
giving a final response. 

Coding System


	Slide Number 1

